Gráficos de áreas, histogramas, visualizaciones de líneas, barras, diagramas de dispersión… matplotlib es una de las librerías en Python más utilizadas en ciencia de datos. Gran parte de su éxito es la facilidad que da a los desarrolladores a la hora de diseñar visualizaciones con datos a partir de muy pocas líneas de código y que luego esos gráficos se puedan incluir en cualquier proyecto web.
Con matplotlib también se pueden hacer visualizaciones con mapas (en ese caso es necesario utilizar también Basemap) y en tres dimensiones (mplot3D, un kit de herramientas que añade funcionalidades de diseño en 3D a matplotlib, con la posibilidad de rotar la figura e incluso hacer zoom en la propia visualización).
2. Seaborn
Seaborn es una librería de visualización de datos en Python basada en matplotlib. La idea de Seaborn es que los científicos de datos dispongan de una interfaz para hacer gráficos estadísticos atractivos e explicativos: el objetivo es visualizar datos complejos de forma sencilla y extraer conclusiones.
3. Bokeh
El objetivo de Bokeh es ofrecer gráficos elegantes, atractivos y sencillos, al estilo de la librería de JavaScript D3.js, pero también proporcionar una interactividad de alto nivel con grandes volúmenes de datos. Es una opción interesante si se quieren crear visualizaciones gráficas, aplicaciones con datos o tableros de mandos.
Con Bokeh se pueden hacer visualizaciones de todo tipo, enfocadas fundamentalmente para navegadores modernos: mapas de coropletas, mapas de calor, gráficos de líneas, de áreas, de barras… Existen muchas posibilidades distintas, en función de los datos y la visualización más apropiada en cada caso.
4. Pygal
Pygal se utiliza fundamentalmente para la creación de gráficos en formato SVG, algo habitual para la creación de visualizaciones interactivas para proyectos digitales. También permite descargar las gráficas en formato de imagen, concretamente en .png, pero deben instalarse las dependencias que lo permiten.
Se pueden hacer visualizaciones de todo tipo: gráficos de barras, de líneas, de tarta, gráficos de embudo y también todo tipo de visualizaciones con mapas.
5. Plotly
Plotly es una herramienta algo distinta a las demás: es una librería online para el análisis y la visualización de datos. Dispone de una documentación muy completa, con tutoriales muy accesibles, no solo para hacer todo tipo de gráficos a partir de los diseños servidos por matplotlib, sino también directamente con la API.
La API permite manejar datos para hacer gráficas que luego se pueden descargar en formato de imagen o bien embeber en una web mediante un código. Para instalar la API en Python se puede usar pip.
No hay comentarios:
Publicar un comentario